An Empirical Evaluation of Intrinsic Dimension Estimators

نویسندگان

  • Cristian Bustos
  • Gonzalo Navarro
  • Nora Reyes
  • Rodrigo Paredes
چکیده

In this work, we study the behavior of different algorithms that attempt to estimate the intrinsic dimension (ID) in metric spaces. Some of these algorithms were developed specifically for evaluating the complexity of the search on metric spaces, based on different theories related to the distribution of distances between objects on such spaces. Others were designed originally only for vector spaces and they have been adapted so that they can be applied to metric spaces. To determine the goodness of the ID estimation obtained with each algorithm —or at least determine which one fits the best to the actual difficulty of the search process on the tested metric spaces— we make comparisons using two indices, one based on pivots and the other on compact partitions. This allows us to verify if the considered ID estimators reflect the actual hardness of searching over the considered spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical estimation of entropy functionals with confidence

Nonparametric estimation of functionals of density from finite number of samples is an important tool in domains such as statistics, signal processing and machine learning. While several estimators have been proposed in literature, the performance of these estimators is not known. We propose a kNN class of plug-in estimators for estimating non-linear functionals of density, such as entropy, mut...

متن کامل

Limiting Properties of Empirical Bayes Estimators in a Two-Factor Experiment under Inverse Gaussian Model

The empirical Bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. It was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. A Bootstrap analysis was performed to ill...

متن کامل

An Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods

Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...

متن کامل

Empirical Bayes Estimators with Uncertainty Measures for NEF-QVF Populations

The paper proposes empirical Bayes (EB) estimators for simultaneous estimation of means in the natural exponential family (NEF) with quadratic variance functions (QVF) models. Morris (1982, 1983a) characterized the NEF-QVF distributions which include among others the binomial, Poisson and normal distributions. In addition to the EB estimators, we provide approximations to the MSE’s of t...

متن کامل

Estimation of fractal dimension and fractal curvatures from digital images

Most of the known methods for estimating the fractal dimension of fractal sets are based on the evaluation of a single geometric characteristic, e.g. the volume of its parallel sets. We propose a method involving the evaluation of several geometric characteristics, namely all the intrinsic volumes (i.e. volume, surface area, Euler characteristic etc.) of the parallel sets of a fractal. Motivate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015